Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(16): 3573-3589, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421237

RESUMO

PURPOSE: To investigate the metabolism of synovial sarcoma (SS) and elucidate the effect of malic enzyme 1 absence on SS redox homeostasis. EXPERIMENTAL DESIGN: ME1 expression was measured in SS clinical samples, SS cell lines, and tumors from an SS mouse model. The effect of ME1 absence on glucose metabolism was evaluated utilizing Seahorse assays, metabolomics, and C13 tracings. The impact of ME1 absence on SS redox homeostasis was evaluated by metabolomics, cell death assays with inhibitors of antioxidant systems, and measurements of intracellular reactive oxygen species (ROS). The susceptibility of ME1-null SS to ferroptosis induction was interrogated in vitro and in vivo. RESULTS: ME1 absence in SS was confirmed in clinical samples, SS cell lines, and an SS tumor model. Investigation of SS glucose metabolism revealed that ME1-null cells exhibit higher rates of glycolysis and higher flux of glucose into the pentose phosphate pathway (PPP), which is necessary to produce NADPH. Evaluation of cellular redox homeostasis demonstrated that ME1 absence shifts dependence from the glutathione system to the thioredoxin system. Concomitantly, ME1 absence drives the accumulation of ROS and labile iron. ROS and iron accumulation enhances the susceptibility of ME1-null cells to ferroptosis induction with inhibitors of xCT (erastin and ACXT-3102). In vivo xenograft models of ME1-null SS demonstrate significantly increased tumor response to ACXT-3102 compared with ME1-expressing controls. CONCLUSIONS: These findings demonstrate the translational potential of targeting redox homeostasis in ME1-null cancers and establish the preclinical rationale for a phase I trial of ACXT-3102 in SS patients. See related commentary by Subbiah and Gan, p. 3408.


Assuntos
Ferroptose , Sarcoma Sinovial , Animais , Antioxidantes , Ferroptose/genética , Glucose/metabolismo , Humanos , Ferro , Malato Desidrogenase , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
Oncotarget ; 7(11): 13082-92, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26909615

RESUMO

PURPOSE: The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. RESULTS: Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. EXPERIMENTAL DESIGN: Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. CONCLUSION: 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/biossíntese , Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/análise , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/farmacologia , Sarcoma/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Sarcoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...